Cartan Subalgebras and Bimodule Decompositions of Ii1 Factors

نویسنده

  • SORIN POPA
چکیده

Let A ⊂M be a MASA in a II1 factor M. We describe the von Neumann subalgebra of M generated by A and its normalizer N (A) as the set Nw q (A) consisting of those elements m ∈M for which the bimodule AmA is discrete. We prove that two MASAs A and B are conjugate by a unitary u ∈ Nw q (A) iff A is discrete over B and B is discrete over A in the sense defined by Feldman and Moore [5]. As a consequence, we show that A is a Cartan subalgebra of M iff for any MASA B⊂M, B = uAu∗ for some u ∈M exactly when A is discrete over B and B is discrete over A.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strongly Solid Ii1 Factors with an Exotic Masa

Using an extension of techniques of Ozawa and Popa, we give an example of a non-amenable strongly solid II1 factor M containing an “exotic” maximal abelian subalgebra A: as an A,A-bimodule, L(M) is neither coarse nor discrete. Thus we show that there exist II1 factors with such property but without Cartan subalgebras. It also follows from Voiculescu’s free entropy results that M is not an inter...

متن کامل

On a Class of Ii1 Factors with at Most One Cartan Subalgebra Ii

This is a continuation of our previous paper studying the structure of Cartan subalgebras of von Neumann factors of type II1. We provide more examples of II1 factors having either zero, one or several Cartan subalgebras. We also prove a rigidity result for some group measure space II1 factors.

متن کامل

ON A CLASS OF II1 FACTORS WITH AT MOST ONE CARTAN SUBALGEBRA, II By NARUTAKA OZAWA and SORIN POPA Dedicated to Uffe Haagerup on his 60th birthday

This is a continuation of our previous paper studying the structure of Cartan subalgebras of von Neumann factors of type II1. We provide more examples of II1 factors having either zero, one, or several Cartan subalgebras. We also prove a rigidity result for some group measure space II1 factors.

متن کامل

v 1 8 M ay 1 99 6 TWO APPLICATIONS OF FREE ENTROPY Kenneth

In [8] and [9], Voiculescu introduced free entropy for n–tuples of self–adjoint elements in a II1–factor, and used it to prove that free group factors, L(Fn), lack Cartan subalgebras [9]. In [4], S. Popa introduced a property for II1–factors, called property C. (See [5] for a paper related to [4].) Like Property Γ of Murray and von Neumann, this is an asymptotic commutivity property, but it is ...

متن کامل

On a Class of Ii1 Factors with at Most One Cartan Subalgebra

We prove that the normalizer of any diffuse amenable subalgebra of a free group factor L(Fr) generates an amenable von Neumann subalgebra. Moreover, any II1 factor of the form Q ⊗̄L(Fr), with Q an arbitrary subfactor of a tensor product of free group factors, has no Cartan subalgebras. We also prove that if a free ergodic measure preserving action of a free group Fr, 2 ≤ r ≤ ∞, on a probability ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000